Jan-Feb 1986 The Fragmentation of 7-(o- and p-R-Benzylidene)-3-(o- and p-R-Phenyl)-2-methyl-3,3a,4,5,6,7-hexahydro-2H-indazoles Under Electron Impact. II [1]

E. Cortés [2], R. Martínez and E. Arzacoya

Instituto de Química, Universidad Nacional Autónoma de México [3],
Ciudad Universitaria, Circuito Exterior,
Coyoacán 04510, México, D. F.
Received June 3, 1985

The electron impact mass spectrometric fragmentation pathways for several 2-methylindazoles, II, were investigated. Our investigation of the mass spectra of these compounds revealed interesting relationships between the 2-N-methyl-substituent in the framework of II and the fragmentation patterns.

J. Heterocyclic Chem., 23, 203 (1986).

Following the research work on mass spectra of indazole compounds [1] we report here the electron impact mass spectra of twelve *ortho* and *para-2-methyl-2H-indazoles* II (Scheme 1) with the aim of comparing the fragments

observed with those of the corresponding 2H-indazoles I [1]. For the compounds II the relative abundances of the ions are shown in the Table 1, and the proposed fragmentation patterns in Schemes 2 to 8. With few exceptions, the latter have been justified by the existence of metastable ions and by comparison with the fragmentation pattern of known-compounds.

The mass spectra of II and I [1] compounds show some common features. They exhibit an intense molecular ion, but contrary to what has been observed on I derivatives, it is the base peak with exception of *ortho*-carboxylic derivative. This probably reflects the stable nature of 2-methylindazole's ring under electron impact which has been obtained by the introduction of the methyl-substituent instead of an hydrogen on the 2 nitrogen atom of 2*H*-indazole ring.

The major fragmentation of the molecular ion proceeds along four pathways: (A) From [M]* to m/e (M*-1), 117, (M*-29). (B) From [M]* to m/e (M*-R), 182 and 128. (C) From [M]* to m/e (224 + R) and 223. (D) From [M]* to m/e (210 + R) and (90 + R).

Pathway A.

A second fragmentation pattern resembling that 2*H*-indazoles I [1] proceeds through the loss of a hydrogen atom from the molecular ion leading the ion 2 of m/e (M⁺-1).

The intensities of 2 peak for II derivatives are lower than those of I compounds. Consistent with the behaviour of indazoles I, the relative abundances of 2 ion are more intense for para-derivatives than ortho-compounds. This indicates that the major part of (M⁺-1) ion are due to the elimination of an ortho-hydrogen and support the fragmentation pattern proposed for this loss on the 2H-indazoles I [1] which invokes an ortho interaction of the o-R-substituent on the 7-benzylidene substituent with the 1 ring nitrogen atom of 2-methylindazoles II (Scheme 2, A).

Likewise, another three pathways are feasible for the formation of the ion 2 from [M]. In the second pathway, elimination of one hydrogen atom from the molecular ion, involving the 3 ring hydrogen atom of indazoles II, affords

Table 1

Relative Abundance of Principal Fragments
(Figures in parentheses indicate the nature of the ions)

Compound No.	ł R	M⁺ (1)	M ⁺ -1 (2)	M+ -29 (2a)	M* -R (3)	m/e 224 + R (4)	223 (4a)	210 + R (5)	117 + R (2b)	90 + R (6)	182 (3a)	128 (3b)
1	Н	100.0	62.0	5.4	62.0	28.0	2.0	5.4	14.0	26.0	15.0	12.0
2	o-Br	100.0	5.0	-	22.0	30.0	27.0	7.0	32.0	25.0	93.5	32.0
3	o-Cl	100.0	10.0	-	45.0	42.0	7.05	8.23	28.0	40.0	68.0	16.0
4	o-COOH	58.0	2.0		2.0	5.0	2.32	100.0	6.0	8.0	4.0	8.0
5	o-CH ₃	100.0	15.0	-	80.5	30.7	2.32	11.63	18.0	35.7	28.0	22.0
6	o-OCH ₃	100.0	10.0	-	80.0	20.0	2.32	14.0	15.0	28.0	26.0	12.0
7	<i>p</i> -Br	100.0	22.0	3.50	2.0	25.0	11.63	10.46	18.0	21.0	14.0	23.0
8	p-Cl	100.0	38.0	8.13	1.0	30.0	1.0	8.83	24.0	24.0	9.0	12.0
9	p-CH ₃	100.0	50.0	6.97	1.0	19.0	-	8.13	12.0	18.0	4.0	12.0
10	p-OCH ₃	100.0	32.0	10.46	1.0	5.0		15.5	10.0	12.0		6.0
11	pNO_2	100.0	19.4	1.0	4.0	43.9	4.65	4.65	12.0	2.0	5.0	14.0
12	p-NH ₂	100.0	28.0	16.27	3.0	8.0	-	25.58	20.0	43.0	5.0	6.0

the ionic species 2' consisting of a tetrahydroindazole cation (Scheme 2, B). On the other hand, elimination of one hydrogen atom of 2-methyl moiety (Scheme 2, C), or 4-hydrogen atom of indazole ring (Scheme 2, D) cannot be excluded.

Fragmentation of 2 then proceeds along two pathways. In one pathway, loss of an R-acridine unit from 2, probably through the tetrahydroindazole cation 2', leads to the ion 2b of m/e (117 + R) which is depicted as a protonated benzonitrile species (Scheme 3). In another pathway, expulsion of ethylene unit from 2, leads to the formation of ion 2a of m/e (M^+ -29) (Scheme 4). This peak is absent on almost all of the *ortho* compounds analyzed II. On the other hand, 2H-Indazoles, I, have not been observed to undergo skeletal rearrangement of this sort. Therefore, this peak is characteristic of the *para*-R-compounds II.

Pathway B.

Compounds II give rise to [M⁺ -R] peaks, 3, which in ortho-R-compounds are more intense than those of para-R-derivatives. An explanation of this difference can be found in the different structures of the (M⁺ -R) ion. For ortho isomers it is stabilized by cyclization, which is quite impossible, however, for para-isomers (Scheme 5). A similar o-R interaction has been reported for 2H-indazoles I [3]. The 3 ion subsequently undergoes decomposition by loss

of a C₈H₈NR unit to yield **3a** (m/e 182), which is depicted as a tetrahydroacridinium cation (Scheme 5). The **3a** ion

Analysis

Table 2

Analytical and Physical Data for Compounds II

				,	Analysis		
Compound No.	R	Mp °C	Yield	Molecular Formula	С	Н	N
					83.40	7.33	9.26
1 [5]	H	109-111	62.25	$C_{21}H_{22}N_{2}$	(83.37)	(7.33)	(9.21)
- (-)					54.80	4.38	6.08
2	o-Br	87-90	54.4	$C_{21}H_{20}Br_2N_2$	(54.78)	(4.34)	(6.00)
					67.92	5.43	7.54
3	o-Cl	74-76	48.7	$C_{21}H_{20}Cl_2N_2$	(67.90)	(5.42)	(7.60)
					70.75	5.68	7.17
4	o-COOH	108-110	43.0	$C_{23}H_{22}N_2O_4$	(70.71)	(5.70)	(7.21)
					83.59	7.93	8.48
5	o-CH ₃	103-105	52.90	$C_{23}H_{26}N_2$	(83.62)	(7.97)	(8.55)
	-				76.20	7.23	7.73
6	o-OCH ₃	88-91	44.60	$C_{23}H_{26}N_2O_2$	(76.21)	(7.23)	(7.77)
					54.80	4.38	6.08
7	p-Br	164-166	42.90	$C_{21}H_{20}Br_2N_2$	(54.82)	(4.36)	(6.13)
	•				67.92	5.43	7.54
8	p-Cl	155-157	60.90	$C_{21}H_{20}Cl_2N_2$	(67.95)	(5.43)	(7.60)
	•				83.59	7.93	8.48
9	p-CH ₃	145-147	71.59	$C_{23}H_{26}N_{2}$	(83.61)	(7.98)	(8.50)
	•				76.20	7.23	7.73
10	p-OCH ₃	91-93	49.50	$C_{23}H_{26}N_2O_2$	(76.22)	(7.21)	(7.80)
	•				64.27	5.13	14.28
11	$p\text{-NO}_2$	186-188	45.72	$C_{21}H_{20}N_4O_4$	(64.30)	(5.13)	(14.30)
	•				79.20	7.60	13.19
12	$p\text{-NH}_2$	177-179	30.00	$C_{21}H_{24}N_3$	(79.23)	(7.60)	(13.22)

further suffers the loss of a C₄H₆ unit to yield the ion **3b** (m/e 128). It is interesting to note that we observed the formation of (M⁺-R) and acridinium ions in the mass spectra of 2*H*-indazoles, therefore they are characteristics of the indazoles of type I and II.

Pathway C.

Unlike their 2*H*-analogues, all 2-methylindazoles II have a most abundant peak in their spectra corresponding to the ion 4 [m/e (224 + R)]. This is formed by the loss of an C_6H_4R radical from the molecular ion by a simple β -cleavage as shown in Scheme 6. The loss of a HR molecule from 4 leads the 4a ion of m/e 223.

Pathway D.

Another interesting difference between I and II derivatives appear when we compare their mass spectra. The first compounds present an ion at m/e (90 + R), 6, with a

middle relative abundance; in the case of II compounds together with this ion, appear another ion at m/e (210 + R), 5. We proposed that both ions arising from the molecular ion via an $(M^{+})'$ intermediate (Scheme 7), and that, the stability of 5 ion, is due to the presence of methyl-substituent on the 2-ring nitrogen-atom of indazole framework.

In summary, it can be said that the mass spectra of substituted 2-methylindazoles II indicate very selective breakdown patterns upon electron impact. It is note worthy that the mechanisms shown in Schemes 3, 4, 6 and 7 are useful to distinguish the compounds I and II. In fact, the spectrum of compounds I do not show peaks at m/e (M^+ -29), (224 + R), 223, (210 + R), (117 + R) and 128. It is therefore, conceivable that the fragmentation pattern of II compounds investigated is largely dependent on the methyl-substituent present in the 2 ring nitrogen atom of indazole moiety.

EXPERIMENTAL

The compounds were synthesized following reported procedures [5] with some modifications. The structures of compounds 1 to 12 were supported by ir and 'H-nmr spectral data. The ir spectra (chloroform) for all compounds showed very characteristic bands at 1610, 1590, 1500, 1450, 1350, 1100-1010, 990 and 880 cm⁻¹. Besides these, bands for the R substituents are also shown.

The 'H-nmr spectra (deuteriochloroform) of compound 1 (R=H) had signals at 7.5-7.1 ppm (11H, m, Ar, and -C=CH-), 3.65 (1H, d, J=13 Hz, N-CH-), 3.2-1.2 (7H, bm, aliphatic), 2.8 (3H, S, -N-CH₃). The 'H-nmr spectra of the other compounds analyzed also showed these characteristic signals with modifications on their chemical shifts due to the *ortho* and *p*-substituent.

Melting points are uncorrected. The ir spectra were recorded on a Perkin-Elmer 283-B spectrophotometer. The 'H-nmr spectra were recorded on a Varian FT-80A spectrometer operating at 80 MHz in deuteriochloroform solution containing tetramethylsilane as an internal standard with chemical shifts (δ) expressed in ppm downfield from TMS. Mass spectra were obtained with a Perkin-Elmer RMU-7H double focusing mass spectrometer and a Hewlett Packard 59854-A quadropole mass spectrometer using the direct inlet system.

The samples were recorded at an ionization chamber temperature of 210° and operating at 70 eV. Analytical and physical data on the new compounds are given in Table 2.

REFERENCES AND NOTES

- [1] Part I. E. Cortés, R. Martínez and E. Arzacoya, J. Heterocyclic Chem., 22, 541 (1985).
 - [2] To whom correspondence should be addressed.
 - [3] Contribution No. 761 from Instituto de Química, UNAM.
- [4] A. A. Khalaf, A. X. El-Shafei and A. M. El-Sayed, J. Heterocyclic Chem., 19, 609 (1982).
 - [5] J. Krapcho and C. F. Turk, J. Med. Chem., 22, 207 (1979).