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The electron impact mass spectrometric fragmentation pathways for several 2-methylindazoles, II, were in-
vestigated. Our investigation of the mass spectra of these compounds revealed interesting relationships bet-
ween the 2-N-methyl-substituent in the framework of II and the fragmentation patterns.
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Following the research work on mass spectra of indazole
compounds [1] we report here the electron impact mass
spectra of twelve ortho and para-2-methyl-2H-indazoles 1I
(Scheme 1) with the aim of comparing the fragments
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observed with those of the corresponding 2H-indazoles I
[1]. For the compounds II the relative abundances of the
ions are shown in the Table 1, and the proposed fragmen-
tation patterns in Schemes 2 to 8. With few exceptions, the
latter have been justified by the existence of metastable
ions and by comparison with the fragmentation pattern of
known-compounds.

The mass spectra of II and [ [1] compounds show some
common features. They exhibit an intense molecular ion,
but contrary to what has been observed on I derivatives, it
is the base peak with exception of ortho-carboxylic deriva-
tive. This probably reflects the stable nature of 2-methylin-
dazole‘s ring under electron impact which has been ob-
tained by the introduction of the methyl-substituent in-
stead of an hydrogen on the 2 nitrogen atom of 2H-inda-
zole ring.

The major fragmentation of the molecular ion proceeds
along four pathways: (A) From [M]* to m/e (M*-1), 117, (M*
-29). (B) From [M]! to m/e (M* -R), 182 and 128. (C) From
M) to mle (224 +R) and 223. (D) From [M]* to m/e (210
+R) and (90 +R).
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Pathway A.

A second fragmentation pattern resembling that 2H-in-
dazoles I [1] proceeds through the loss of a hydrogen atom
from the molecular ion leading the ion 2 of m/e (M* -1).
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The intensities of 2 peak for II derivatives are lower than
those of I compounds. Consistent with the behaviour of
indazoles I, the relative abundances of 2 ion are more in-
tense for para-derivatives than ortho-compounds. This in-
dicates that the major part of (M* -1) ion are due to the
elimination of an ortho-hydrogen and support the
fragmentation pattern proposed for this loss on the
2H-indazoles I [1] which invokes an ortho interaction of
the o-R-substituent on the 7-benzylidene substituent with
the 1 ring nitrogen atom of 2-methylindazoles II (Scheme
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Likewise, another three pathways are feasible for the ey

formation of the ion 2 from [M]". In the second pathway,

elimination of one hydrogen atom from the molecular ion,

involving the 3 ring hydrogen atom of indazoles I1, affords ‘e .,m/o 223

Table 1
Relative Abundance of Principal Fragments
(Figures in parentheses indicate the nature of the ions)
m/e

Compound M* M* 1 M* -29 M*.R 224 +R 223 210 +R 117 +R 90 +R 182 128
No. R )] @ (2a) 3 @ (4a) ©®) (2b) (6) (3) (3b)
1 H 100.0 62.0 5.4 62.0 28.0 2.0 5.4 14.0 26.0 15.0 12.0
2 0-Br 100.0 5.0 22.0 30.0 27.0 7.0 32.0 25.0 93.5 32.0
3 o-Cl 100.0 10.0 45.0 42.0 7.05 8.23 28.0 40.0 68.0 16.0
4 0-COOH 58.0 2.0 2.0 5.0 2.32 100.0 6.0 8.0 4.0 8.0
5 0-CH, 100.0 15.0 80.5 30.7 2.32 11.63 18.0 35.7 28.0 22.0
6 0-OCH, 100.0 10.0 - 80.0 20.0 2.32 14.0 15.0 28.0 26.0 12.0
7 p-Br 100.0 22.0 3.50 2.0 25.0 11.63 10.46 18.0 21.0 14.0 23.0
8 p-Cl 100.0 38.0 8.13 1.0 30.0 1.0 8.83 24.0 24.0 9.0 12.0
9 p-CH, 100.0 50.0 6.97 1.0 19.0 8.13 12.0 18.0 4.0 12.0
10 p-OCH, 100.0 32.0 10.46 1.0 5.0 - 15.5 10.0 12.0 - 6.0
11 pNO, 100.0 19.4 1.0 4.0 43.9 4.65 4.65 12.0 2.0 5.0 14.0
12 p-NH, 100.0 28.0 16.27 3.0 8.0 25.58 20.0 43.0 5.0 6.0
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the ionic species 2’ consisting of a tetrahydroindazole ca-
tion (Scheme 2, B). On the other hand, elimination of one
hydrogen atom of 2-methyl moiety (Scheme 2, C), or 4-hy-
drogen atom of indazole ring (Scheme 2, D) cannot be ex-
cluded.

Fragmentation of 2 then proceeds along two pathways.
In one pathway, loss of an R-acridine unit from 2, pro-
bably through the tetrahydroindazole cation 2, leads to
the ion 2b of m/e (117 +R) which is depicted as a pro-
tonated benzonitrile species (Scheme 3). In another
pathway, expulsion of ethylene unit from 2, leads to the
formation of ion 2a of m/e (M* -29) (Scheme 4). This peak
is absent on almost all of the ortho compounds analyzed
II. On the other hand, 2H-Indazoles, I, have not been
observed to undergo skeletal rearrangement of this sort.
Therefore, this peak is characteristic of the para-R-
compounds II.

Pathway B.

Compounds II give rise to [M* -R] peaks, 3, which in
ortho-R-compounds are more intense than those of para-R-
derivatives. An explanation of this difference can be found
in the different structures of the (M* -R) ion. For ortho
isomers it is stabilized by cyclization, which is quite im-
possible, however, for para-isomers (Scheme 5). A similar
o-R interaction has been reported for 2H-indazoles I [3].
The 3 ion subsequently undergoes decomposition by loss
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of a CsHsNR unit to yield 3a (m/e 182), which is depicted
as a tetrahydroacridinium cation (Scheme 5). The 3a ion

Table 2

Analytical and Physical Data for Compounds II

Compound No. R Mp °C
115] H 109-111
2 o-Br 87-90
3 o-Cl 74-76
4 0-COOH 108-110
5 o-CH; 103-105
6 0-OCH, 88-91
7 p-Br 164-166
8 p-Cl 155157
9 p-CH, 145-147

10 p-OCH, 9193
11 p-NO,; 186-188
12 p-NH, 177-179

[5] Prepared by Krapcho and Turk.

’ Analysis
Yield Molecular Formula C H N
83.40 7.33 9.26
62.25 C,,Hy,N, (83.37) (7.33) 9.21)
54.80 4.38 6.08
54.4 C; H,0Br;N, (54.78) (4.34) (6.00)
67.92 5.43 7.54
48.7 C,H;0CLN, (67.90) (5.42) (7.60)
70.75 5.68 717
43.0 C,;H,,N,0, (70.71) (5.70) (7.21)
83.59 7.93 8.48
52.90 CysHyN, (83.62) (7.97) (8.55)
76.20 7.23 7.73
44.60 C,3H26N,0, (76.21) (7.23) (1.77)
54.80 4.38 6.08
42,90 C,, H,oBr,N, (54.82) (4.36) (6.13)
67.92 5.43 7.54
60.90 C,,H2CLN, (67.95) (5.43) (7.60)
83.59 7.93 8.48
71.59 CasHaeN, (83.61) (7.98) (8.50)
76.20 7.23 7.73
49.50 C,3H26N,0, (76.22) (7.21) (7.80)
64.27 5.13 14.28
45.72 C;Hz6N,O, (64.30) (5.13) (14.30)
79.20 7.60 13.19
30.00 Cyi HjN; (79.23) (7.60) (13.22)
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further suffers the loss of a C4Hs unit to yield the ion 3b
(m/e 128). It is interesting to note that we observed the for-
mation of (M* -R) and acridinium ions in the mass spectra
of 2H-indazoles, therefore they are characteristics of the
indazoles of type I and II.

Pathway C.

Unlike their 2H-analogues, all 2-methylindazoles II have
a most abundant peak in their specira corresponding to
the ion 4 [m/e (224 + R)). This is formed by the loss of an
CeH4R radical from the molecular ion by a simple
B-cleavage as shown in Scheme 6. The loss of a HR mole-
cule from 4 leads the 4a ion of m/e 223.

Pathway D.

Another interesting difference between I and II deriva-
tives appear when we compare their mass spectra. The
first compounds present an ion at m/e (90 +R), 6, with a

middle relative abundance; in the case of II compounds
together with this ion, appear another ion at m/e (210
+R), 5. We proposed that both ions arising from the
molecular ion via an (M*)' intermediate (Scheme 7), and
that, the stability of 5 ion, is due to the presence of methyl-
substituent on the 2-ring nitrogen-atom of indazole frame-
work.

In summary, it can be said that the mass spectra of sub-
stituted 2-methylindazoles II indicate very selective break-
down patterns upon electron impact. It is note worthy that
the mechanisms shown in Schemes 3, 4, 6 and 7 are useful
to distinguish the compounds I and IL. In fact, the spec-
trum of compounds I do not show peaks at m/e (M* -29),
(224 +R), 223, (210 +R), (117 +R) and 128. It is
therefore, conceivable that the fragmentation pattern of II
compounds investigated is largely dependent on the
methyl-substituent present in the 2 ring nitrogen atom of
indazole moiety.
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EXPERIMENTAL

The compounds were synthesized following reported procedures [5]
with some modifications. The structures of compounds 1 to 12 were sup-
ported by ir and 'H-nmr spectral data. The ir spectra (chloroform) for all
compounds showed very characteristic bands at 1610, 1590, 1500, 1450,
1350, 1100-1010, 990 and 880 cm'. Besides these, bands for the R substi-
tuents are also shown.

The 'H-nmr spectra (deuteriochloroform) of compound 1 (R =H}) had
signals at 7.5-7.1 ppm (11H, m, Ar, and -C=CH-), 3.65 (1H, d, ] =13 Hz,
N.CH-), 3.2-1.2 (7TH, bm, aliphatic), 2.8 (3H, S, -N-CH,). The '‘H-nmr spec-
tra of the other compounds analyzed also showed these characteristic
signals with modifications on their chemical shifts due to the ortho and
p-substituent.

Melting points are uncorrected. The ir spectra were recorded on a
Perkin-Eimer 283-B spectrophotometer. The 'H-nmr spectra were
recorded on a Varian FT-80A spectrometer operating at 80 MHz in
deuteriochloroform solution containing tetramethylsilane as an internal
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standard with chemical shifts () expressed in ppm downfield from TMS.
Mass spectra were obtained with a Perkin-Elmer RMU-7H double focus-
ing mass spectrometer and a Hewlett Packard 59854-A quadropole mass
spectrometer using the direct inlet system.

The samples were recorded at an ionization chamber temperature of
210° and operating at 70 eV. Analytical and physical data on the new
compounds are given in Table 2.
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